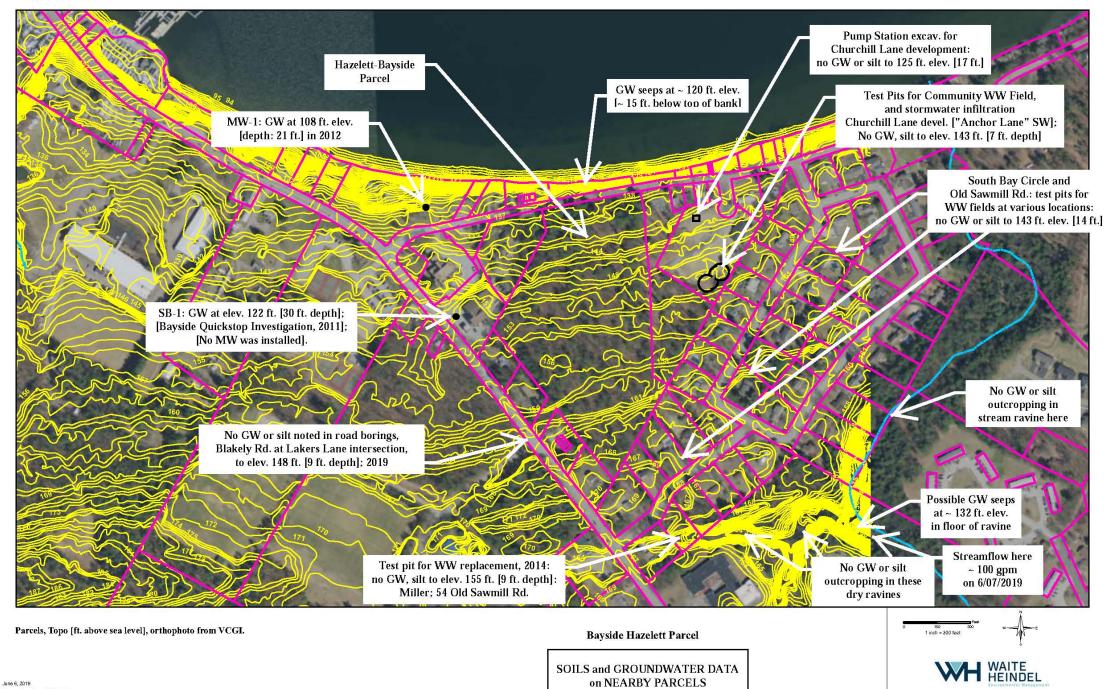
Preliminary Evaluation of Wastewater Disposal Capacity: Hazelett – Bayside Parcel Colchester, Vermont

Craig Heindel, C.P.G.
Senior Hydrogeologist,
Waite-Heindel
Envir. Mgmt.
Burlington, VT

• Capacity for 100,000 – 120,000 gpd is likely available and permittable;



- Capacity for 100,000 120,000 gpd is likely available and permittable;
- Tertiary Treatment is required for greater than 50,000 gpd;

- Capacity for 100,000 120,000 gpd is likely available and permittable;
 - Tertiary Treatment is required for greater than 50,000 gpd;
- Several unknown factors would need to be evaluated, for confirmation.

VT's INDIRECT DISCHARGE REGULATIONS:

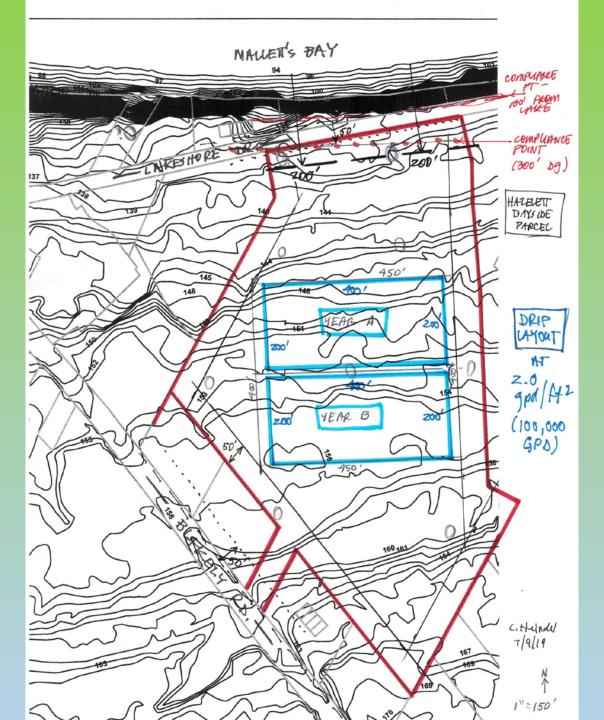
[Pertain to land-based WW disposal of greater than 6,500 gpd]

- > Three independent capacities must be evaluated:
 - 1. Sufficient application area [horizontal];

VT's INDIRECT DISCHARGE REGULATIONS:

- > Three independent capacities must be evaluated:
 - 1. Sufficient application area [horizontal];
- 2. Sufficient vertical room for induced groundwater mound [maintain min. 3.0-ft. unsaturated zone below infiltrative surface];

VT's INDIRECT DISCHARGE REGULATIONS:


- > Three independent capacities must be evaluated:
 - 1. Sufficient application area [horizontal];
- 2. Sufficient vertical room for induced groundwater mound [maintain min. 3.0-ft. unsaturated zone below infiltrative surface];
 - 3. Compliance with "Aquatic Permitting Criteria" [provides presumption of compliance with Vermont Surface Water Quality Standards].

1. Sufficient Application Area [Horizontal Area]:

ADEQUATE FOR 100,000 – 120,000 GPD

- By Drip Dispersal; or
- By Conventional Leachfield

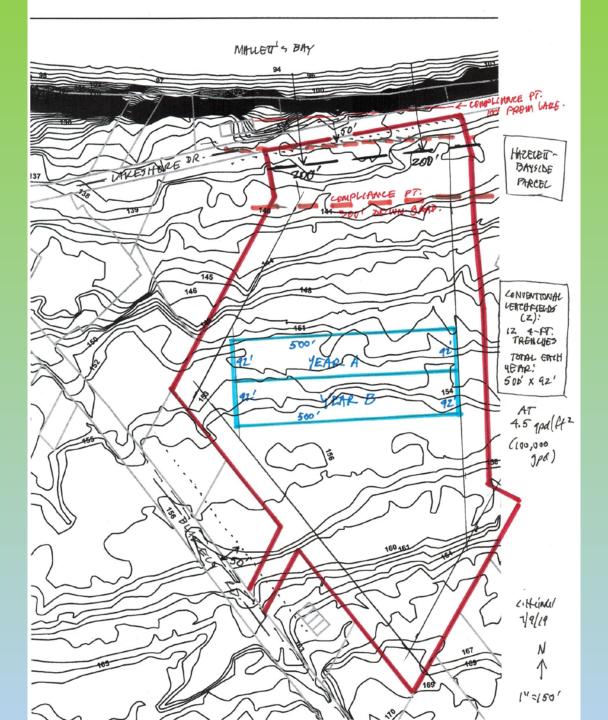
DRIP DISPERSAL

Perc-Rite® Drip Dispersal System, distributed by Oakson, from American Manufacturing:

- 0.5-in. diameter
- Emitters located every 2 ft.
- Emitter discharge rate: 0.61 gal/hour, over wide pressure range.

DRIP DISPERSAL INSTALLATIONS In Wooded Areas

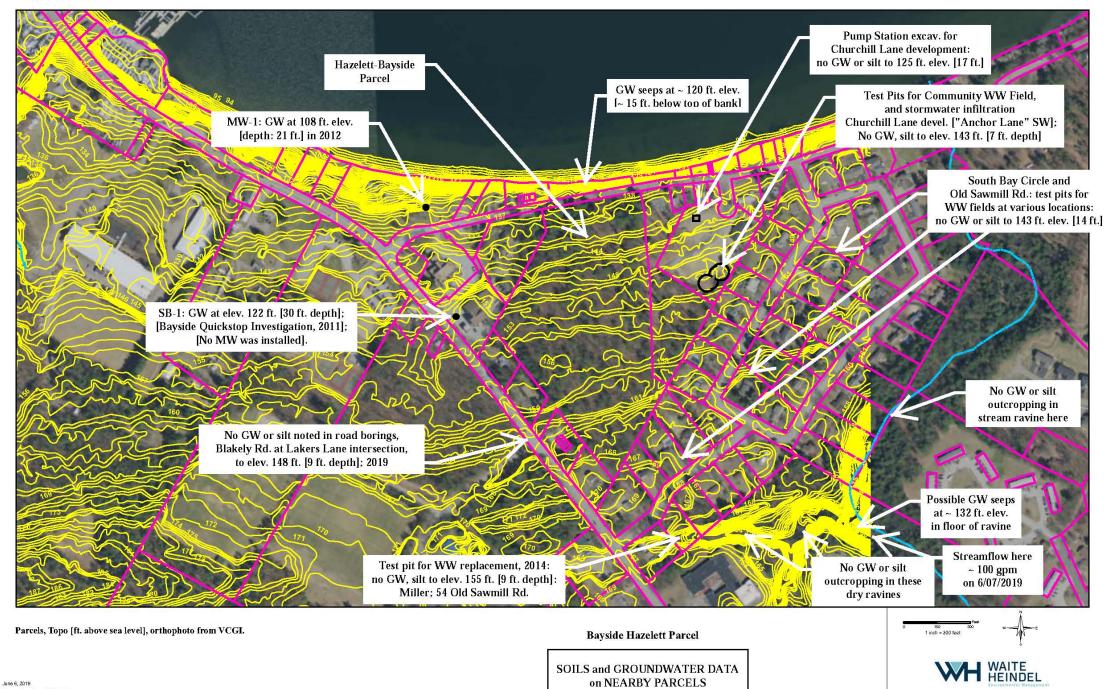
Prelim. Eval. WW Disposal Hazelett-Bayside Parcel



Prelim. Eval. WW Disposal Hazelett-Bayside Parcel Woods of Hazelett-Bayside Parcel

CONVENTIONAL LEACHFIELD

CONVENTIONAL LEACHFIELD



2. Sufficient Hydrogeologic Capacity [Induced Groundwater Mound]:

APPEARS TO BE ADEQUATE FOR 100,000 – 120,000 GPD

- Based on conservative calculations [see Report];
 - AND based on limited data, from surrounding properties

APPEARS LIKELY, for 100,000 – 120,000 GPD

APPEARS LIKELY, for 100,000 – 120,000 GPD

• Based on Pilot Test conducted on site at Bromley Resort with similar conditions [deep sands & gravels]

APPEARS LIKELY, for 100,000 – 120,000 GPD

• Based on Pilot Test conducted on site at Bromley Resort with similar conditions [deep sands & gravels]

CRITICAL NUTRIENTS are toughest hurdle:

- Not increase Total Diss. P by more than 0.001 mg/L;
 - Not increase Nitrate Nitrogen above 2.0 mg/L.

APPEARS LIKELY, for 100,000 – 120,000 GPD

- Not increase Total Diss. Phosphorus by more than 0.001 mg/L;
 - Not increase Nitrate Nitrogen above 2.0 mg/L.
- Compliance Point: in Groundwater 300 ft. down-gradient.
 - SO: Needs Site-Specific confirmation AND

 Tertiary Treatment

Tertiary Treatment, Per Indirect Discharge Rules:

	Monthly Average	Daily Maximum	
Parameter	Mg/L	Mg/L	
Biological Oxygen Demand [5-day]	10	18	
Total Suspended Solids	10	18	
Total Dissolved Phosphorus	0.5	1.0	
Total Kjeldahl Nitrogen	5	10	
Ammonia [as N]	1	2.0	
Nitrate Nitrogen	5	10	

Treatment Levels, Per Indirect Discharge Rules:

TABLE #12: MINIMUM SEWAGE TREATMENT REQUIREMENTS BASED ON DESIGN CAPACITY AND DISPOSAL METHOD

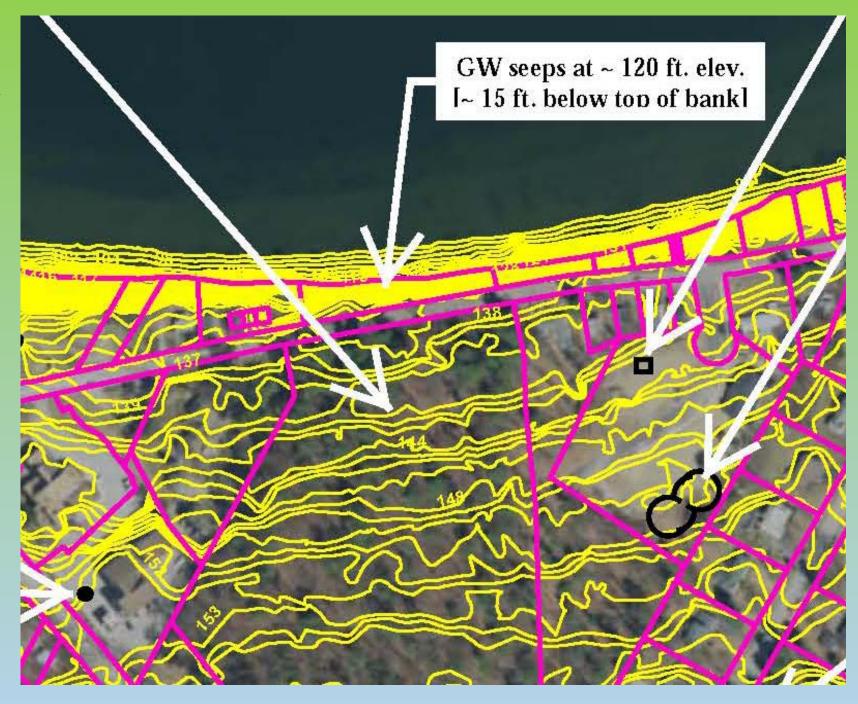
Design Capacity (gallons per day)	Disposal Method	Minimum Treatment Level Required	
6,500 - 30,000	Leachfield	Primary (Septic tank)	
30,001 - 50,000	Leachfield	Secondary + (1)	
50,001 and greater	Leachfield	Tertiary	
6,500 and greater	Sprayfield	Secondary	

⁽¹⁾ Secondary 'plus' treatment level from recirculating sand / textile filters. See Table #13.

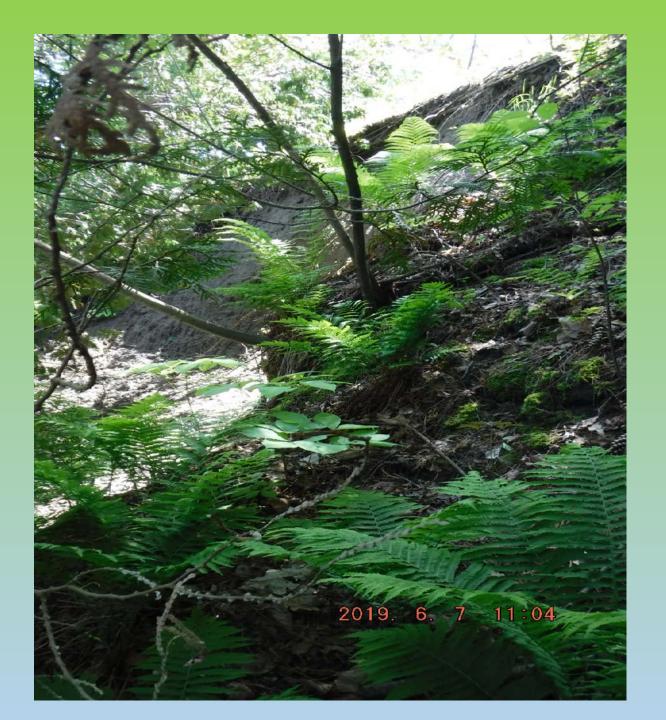
Treatment Levels, Per Indirect Discharge Rules:

TABLE #13: EFFLUENT LIMITATIONS FOR EACH TREATMENT LEVEL

	Effluent Limitation (in mg/L) by Treatment Level			
Parameter	Septic Tank	Secondary	Secondary + (1)	Tertiary
Biochemical Oxygen Demand (5-Day)	N/A	30 ⁽²⁾	15 ⁽³⁾	10 (4)
Total Suspended Solids	N/A	30 ⁽²⁾	15 ⁽³⁾	10 (4)
Total Dissolved Phosphorus	N/A	N/A	N/A	0.5 (5)
Total Kjeldahl Nitrogen	N/A	N/A	N/A	5 ⁽⁶⁾
Ammonia (as N)	N/A	N/A	N/A	1 ⁽⁷⁾
Nitrate nitrogen	N/A	N/A	N/A	5 (8)
Total Nitrogen (as N)	N/A	N/A	N/A	N/A



Treatment Levels: Avoid Tertiary Treatment?


- Wastewater Flows below 50,000 gpd;
- May not meet Aquatic Permitting Criteria, particularly Phosphorus removal [not increase TDP in groundwater by more than 0.001 mg/L]

Slope Stability Issue, East Lakeshore Drive

> Slope Stability Issue, East Lakeshore Drive

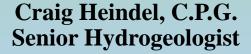
- Capacity for 100,000 120,000 gpd is likely available and permittable;
 - Tertiary Treatment is required for greater than 50,000 gpd;
- Several unknown factors would need to be evaluated, for confirmation.

Next Steps:

- 1. Evaluate the potential risk of large-scale WW disposal on the slope stability between East Lakeshore Drive and Malletts Bay.
- 2. Evaluate soil characteristics, groundwater depths, groundwater flow directions
 - -- by borings and monitoring wells throughout and around the parcel.
 - 3. Water level monitoring in the monitoring wells through the seasonal high water table period [March 1 May 31].

Next Steps:

- 1. Evaluate the potential risk of large-scale WW disposal on the slope stability between East Lakeshore Drive and Mallet's Bay.
 - 2. Evaluate soil characteristics, groundwater depths, groundwater flow directions
 - -- by borings and monitoring wells throughout and around the parcel.
 - 3. Water level monitoring in the monitoring wells through the seasonal high water table period [March 1 May 31].


Further evaluations would then be considered, after these initial steps are taken:

- Determine groundwater flow directions,
- Determine compliance point[s] for Indirect Discharge Permit,
 - Conduct pilot test to document nutrient removal.

Preliminary Evaluation of Wastewater Disposal Capacity: Hazelett – Bayside Parcel Colchester, Vermont

Questions?

